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A hierarchical version of two-dimensional lattice Coulomb gases is investigated. 
For fl > tic = 8n there is a locally stable line of fixed points for the renormaliza- 
tion group ("block charges") transformations. For fl > tic (tic <<- tic <~ 3nflc), these 
fixed points are globally stable. As a consequence we show that there is no 
screening of external charges for any activity if fl > tic- At tic a supercritical 
bifurcation takes place and we investigate the behavior of the model for fl < ~ 
to show a weak form of screening. 
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1. I N T R O D U C T I O N  

It is well known (l) that two-dimensional lattice Coulomb gases exhibit 
a Kosterlitz-Thouless phase transition, which is characterized by the 
existence of a critical temperature tic such that for fl < tic the systems dis- 
play Debye screening of fractional external charges and for fl > tic no 
screening takes place. 

Already in the early attempts at understanding the phenomenon 
renormalization group (RG) techniques were recognized to be of 
relevance. ~1'2) Even the rigorous proof, by Fr6hlich and Spencer/3) of the 
low-temperature behavior of the systems (fi>>tic) makes strong use of 
renormalization group ideas. 

For fl ~ tic, Debye screening was proved in ref. 13 using earlier results 
by Brydges and Federbush. ~14) Practically nothing is rigorously known 
about the behavior of the systems around tic- 
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This paper is part of a program initiated in refs. 5 and 8 aiming 
at a fuller understanding of the Kosterlitz-Thouless scenery using RG 
techniques. 

As usual, (6,v) our initial step is to consider a hierarchical version of the 
model. This is the content of the present work. 

Our hierarchical model is defined by the replacement of the "lattice" 
Coulomb potential by 

VH(x, y) = - 1 In dL(x, y )  (1.1) 

where dL( . , . )  is the "hierarchical distance function" first introduced by 
Bleher and Sinai 19) and defined below. With this modified Coulomb poten- 
tial we consider a family ~ of Coulomb gases with different a priori charge 
probability distributions 2 which are mapped into each other by RG trans- 
formation R: f f  --, ~-: 

2 ~ 2 ' =  R2 (1.2) 

corresponding to the formation of block charges. In contradistinction to 
refs. 3 and 8 we work directly with charge configurations, no use being 
made of the so-called sine-Gordon representation. (4) 

The trivial fixed point 2o in this picture corresponds to the vacuum 
theory, i.e., the model with charge zero with a priori probability one. In 
this situation there is obviously no screening and our first result is a proof 
of the stability of this trivial fixed point for fl > tic = 8g. As a consequence, 
we are able to prove that for fl > tic and 2 close to 2o (in a suitably defined 
topology) there is no screening. The condition 2 "close" to 2o amounts to 
a small activity condition. We also show that there exists tic >~ fl~ such that 
the results holds for all 2 c f f  (not necessarily close to 2o!). 

It is interesting to remark that for fl > tic all directions in Y around 
2o are irrelevant and this feature simplifies very much the mathematical 
treatment of the problem. 

At fl = tic a supercritical bifurcation takes place: the trivial fixed point 
becomes unstable and a nontrivial line of fixed points appears with a 
different long-distance behavior of correlation functions. We prove that for 
e = (t ic-f l)1/2 sufficiently small, these fixed points describe theories with a 
weak form of screening of Coulomb potential of external charges 

1 
V~l(X, y)  ~ - - -  in dL(x, y )  (1.3) 

c(~) 

where C(e) > 2~ for e > 0. 
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This screening for fl < tic is not exponential and this is a feature of 
hierarchical models (see, for instance, ref. 6, Exercise 2, Chapter 4). 

The bifurcation at fl = tic is that of a simple eigenvalue and owing to 
the simplicity of the Banach space o~ where R acts, it is possible to apply 
the beautiful construction described in Crandall (11) of the bifurcating fixed 
point. The simplicity of our methods should be compared to the technical 
difficulties involved in the analogous e = 4 - d  expansion for the 2q~ 4 
hierarchical theory (see refs. 9, 10, and 12). 

The hierarchical version of Coulomb gases we consider here has been 
independently proposed and discussed in refs. 5 and 8. Some of our results, 
namely those in the region fl > fie and small activity for the standard gas 
(see Section 2 for definition), were also obtained in ref. 8 with a different 
approach. With our methods, based on the stability analysis of the trivial 
fixed point, we are able to obtain global stability for fl > tic and construct 
the nontrivial stable fixed point for fl < tic. 

This paper is organized as follows. In Section 2 we introduce the 
family ~ of models to be considered. In Section 3 we describe the action 
of the RG transformation and prove the stability of the trivial fixed point 
for fi > tic. In Section 4 we discuss the asymptotic behavior of correlation 
functions for fl > tic showing that they are governed by the behavior of the 
stable fixed point. In Section 5 we discuss the bifurcation and the screening 
properties of the nontrivial fixed point. 

2. THE M O D E L  

A configuration q of the system enclosed in a finite volume A c 7/2 is 
an assignment of an integer charge q(x)e 7/ for each x ~ A. The energy 
EA(q) of a configuration is given by 

Ea(q)=�89 V~lq)= ~, q(x) Vl_,(x, y)q(y) (2.1) 
x , y ~ A  

where 
1 

Vu(x, y ) =  -~-~ In dL(x, y) (2.2) 

and dL( . , .  ) is the hierarchical distance function defined as follows. 
Let L > 1 be an integer; for x, y ~ Z 2 we define 

NL(x, y) = inf{N~> 1, Ninteger: [L-Nx] = [L Uy] } (2.3) 

where for z e ~2, [z] s 7/2 and has as components the integer part of the 
components of z. We then set 

dL(x, y) = L NL(x'y) (2.4) 

822/55/1-2-10 
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Notice (a) the long-distance behavior 

dL(x, y) 
lim 1 

ix yl~o~ I x - y l  

and (b) the behavior under scaling 

L if x =  y 
dL(LX, Ly)= 

LdL(x, y) otherwise 

(2.5) 

with 

Fz(q)= [ I  2(q) (2.7) 
x E A  

where s is going to be chosen in a suitably defined class f f  of acceptable 
functions, to be later specified. 

Due to the usual infrared problems, (~7) we shall consider only neutral 
.(A) configurations q, i.e., Z ~ A  q (x )=0 .  The Gibbs measure ~ ,~  at inverse 

temperature fi is given by 

t~,~(q) - z(A) (2.8) 
B,2 

~ ( A )  _ e - f l E A q )  -~,~ - ~ F~(q) 
q:~_ q(x) = 0 

The usual choices for 2 are: 

(a) Hard-core gas, with particle activity z: 

2he(q) =6q, o+Z(~q,l +bq, 1) 

(b) Standard gas, with particle activity z: 

2s(q) = I,(2z) 

where I,  denotes the nth modified Bessel function. 

(c) Villain gas: 

2v(q) = 1 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.6) 

The unnormalized a priori probability distribution of charge con- 
figuration F~(q) is determined by a charge activity function 2: 7 / ~  ~, 2 ~> 0, 
through 
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For this model the partition function is not well defined, since 
~(A) _ o% but we shall be able to provide a natural definition by a limiting ~ f l , 2 v  - -  

procedure. 
The reason why we consider 2 belonging to a more general class o~ of 

models is due to the fact that block charge RG transformation as defined 
below will map 2--* 2'~ ~ ,  with 2 ' r  2 in general. 

3. R E N O R M A L I Z A T I O N  G R O U P  T R A N S F O R M A T I O N  A N D  T H E  
T R I V I A L  FIXED P O I N T  

Our RG transformation involves, as usual, (6'15) two steps: integration 
over fluctuations and rescaling back to the original lattice. To that extent 
we introduce the rescaled block charge configuration qB: 

qB(x) = ~ q(Lx+y) (3.1) 
O < . y i < L  

i ~1 ,2  

The effective probability distribution of {qs(x), x eZ 2} may then be 
computed as follows. 

We first notice that, due to the property (2.6), 

1 
EAu(q)=-~ ~ q(x) VH(x, y) q(y) 

x,  y ~  A N  

= EAu ~(qB) -- ~ In L ~ qs(x) q~(y) (3.2) 
xv~  y 

x , y ~ A N - 1  

where A N =  { [ - - L  N, L N -  L N-1 ] • [ -  L N, L N -  L N-I ] (5 ~2}. 
Neutrality then yields 

EAN(q)=EAN , ( q . ) + l l n L  ~ [qB(x)] 2 (3.3) 
X e A N  t 

The joint Gibbs probability distribution of {qs(x), x ~ A  N _  1} is then 
obtained from (2.8) after summation over q keeping qB fixed. It is given by 

1 
#(Au_~)~,, ~_ F~,(qB) exp[--~EAu_~(qB)] (3.4) 1ff, 2' 1,tlB,l - ~,(AN_ l) 

~ 3,)-' 

where 

2 ' (q )=L  (/3/4n)q2 E 2(ql)'"2(q/-~) (3.5) 
ql,.-., qL 2 

~_ ,q i=q  
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Notice that apart from the volume change, AN--~A N 1 ,  the joint 
probability distribution of {qs(x), x e A N ~} is again of the type (2.8) with 
2 replaced by 2'. 

We are thus led to investigate the transformation 2 ~ 4': 

r , 2 = m~a(2 * 2 * . . .  2)----- m~o~(2 *L2) 

L 2 times 

(3.6) 

where the convolution product �9 in (3.6) is defined by 

( f  * g)(q)= ~ f(q~) g(q2) (3.7) 
ql,q2~Z 

ql+q2=q 

and m ~  is the multiplication operator by the function ~oa: 

(m~f)(q) = q~(q) f(q) 

with 

(3.8a) 

q~a(q) = L-(/3/4x)q2 (3.8b) 

First of all we notice that the transformation 2--* 4' is well defined if 
2 e l l ( Z ) ,  i.e., 11211~ =Y~q~z 12(q)l < ~ .  Moreover, if 2~/~(Z),  4' is also in 
/I(Z) and, by Fubini's theorem, 

(3.9) 112'111 ~< I1~o~11 ~ 11211 ~2 = (114111) L2 

We are interested only in the subspace 11(77) of even distribution 
2 ( q ) = 2 ( - q ) .  Notice that 2 'e11(~)  if 2e l l (Z ) .  There is no loss of 
generality in considering only those 2 e I~(Z) such that 2 (0 ) r  since this 
will be necessarily the case after the first iteration: if 2 r 0, then 

2'(0) = 112*t=/Zll ~ > 0 (3.10) 

In order to avoid the annoying appearance of zero modes upon 
linearization of (3.6), we shall redefine the transformation by introducing a 
normalization factor N(2): 

2 ' =  [1/2"c2(0)] m~o~(2 *L2) = [ l /N(2)]  m~(2 *L2) (3.11) 

with this choice, made possible by (3.10), we have 

2'(0) = 1 (3.12) 
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Therefore there is no loss of generality in considering the affine subset 
of I~(7/), ~,~, given by 

= 1} (3.13) 

From the above discussion it is clear that for the redefined map (3.11), 
2 ' ~ g  if 2 ~ .  

The transformation (3.11) has a trivial point 2o~ Y given by 

1, q = 0  (3.14) 
2o(q) = 6q, O = 0, q r 0 

Moreover, an arbitrary element )~ E f f  can be uniquely decomposed as 

2 = 2 o +  Z (3.15) 

where Z belongs to the subspace (# of 11(7/): 

= {z tJ(z) :  z (o )  = 0}  (3.16) 

Therefore the transformation (3.11) maps 2 = 2 o + Z ,  )~eff, to 
2 ' =  20 + ~' with Z'e f# uniquely defined. For simplicity of analysis we shall 
often consider the "unphysical" case L2=  2, in which case the transforma- 
tion r: (~, fl) e ~ x R + ~ Z' = r(g, fl) ~ (# is given explicitly by 

or  

2z(q) + E q l  + q2 = q z(ql ) z(q2) 
z'(q) = ~oa(q) 1 "4- Eq' Iz(q')l e (3.17) 

2 Z + Z * X  
r(z, fl) = Z' (3.18) 

---me~ 1 + ilzl12 

The trivial fixed point in ff for the map r is the point 0. Its stability 
can be readily analyzed by considering the linear approximation l: ff x 
~+ ~ ff of r around 0. It is given by a kernel lqq, of [=  dr(O,  f l ) ,  

(/g)(q) = Y', l qq 'Z (q ' ) ,  q ~ 0 (3.19) 
q'~Z 

where 
lqq, = L 2 -(fl/4rc)q2(~q,q, (3.20) 

The eigenvectors of l(/3) = dr(0,/~) are ej(q) = (1/x/2)(fj, q + 6)_q), 
j = 1, 2 ..... and the associated eigenvalues: 

co j ( f l )  =- Z 2 - (~/4~)j2 (3.21) 
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The spectrum of l(fi) is the closure of {oj(fl), j =  1, 2,...} and so for 
fl >fl~ = 8n, all eigenvalues (and the whole spectrum) are inside the unit 
circle in the complex plane. 

We are therefore in a position to apply Lyapunov's linear stability 
Theorem ~ to conclude local stability of Zo = 0 against small perturbation 
in the initial condition. 

T h e o r e m  3.1. Let fl > fl~ = 8n; there is p(fl) > 0 and 6(fl) < 1 such 
that 

II/~)(z, fl)ll, 46" llzll~ (3 .22 )  

for ZeN,  IlZlll<P(fl). 

Remark 3.2. For the hard-core gas, IlZlll = z, and for the standard 
gas,  Ilzlll = 2 Zq~> 1 [Iq(2Z)/Io(2Z)] = O(z 2) for z ~ 0. Therefore, for these 
gases the condition Ilzll] < p(f l )  is verified in the small-activity region. 

For  f l>f lc  a much stronger result holds: the trivial fixed point is 
globally stable. 

T h e o r e m  3 . 3 .  There exists fief>tic, with tic < 3n 7 tic, such that for 
t~>L, 

Z (") = r("~(Z, fl) ,, ~ co ' O; VZ ~ c~ (3 .23 )  

ProoL Let us for simplicity present the proof for L2 =  2. From (3.18) 
it follows that 

l iz'l l ,  < 
211~o~{12 Ilzll 2 + {l~oel{, Ilz * zll 

1-4-Ilzll 2 

2 lrzll2 + llxll 2 
~< {lqo~ll, 

1 + Hzl{2 2 
2a + a 2 

II~0~ll, sup - -  ~< 311~o~111 -= R(fl) a~>o 1 + a  2 
(3.24) 

Therefore we may assume without loss of generality that Hxl{] ~< R(fl). 
Inserting this again in (3.18), we obtain 

{]~'{{~ ~2 {{qo~{r o o I{X{{] + {{qo~{{1 {{Z{{ 2 

~< (2 }l~%ll~ + 3  Ilq, Bll~){I;(/ll 

< (~ + ~-~)Ilzl, a (3.25) 



The Kosterl itz-Thouless Phase Transition 149 

Remark 3.4. (a) The proof can be easily adapted to provide better 
upper bounds on fl~. (b )For  /3>8~ the transformation r()6 3) is not a 
strict contraction, as dr(x, 3) has an eigenvalue with absolute value bigger 
than one for )~ not too far from 0. 

Remark 3.5. The stability of the trivial fixed point for 3 > 8~ means 
from a physical point of view that the a priori probability of finding 
charged blocks goes to zero with the size the block going to infinity. 

Remark 3.6. The Vilain model. This model can be considered as the 
limit s: ~ co of the model 

2~(q)= O, Iql> (3.26) 

2~ e # and so we can construct Y~ as defined by (3.11), with the following 
properties: 

2'~(0) = 1; 2'~ ~ l~(Z); I;t'~(q)l ~< (p~(q) (3.27) 

and l i m ~  2'~(q)-=2v(q) exists and is finite. Therefore 2'v exists and 
belongs to Y.  

Theorem 3.3 thus implies that for/~ > tic, 2(~ ) ~ ,  - ~ 2o. 

4. ABSENCE OF SCREENING FOR 1~>8n 

In this section we discuss how the electrostatic potential between two 
far apart external charges is affected by the presence of the gas. To do that, 
we consider for a given distribution 7 of fractional external charges 

7 :Z2 ~ ( -  1/2, 1/2) 
(4.1) 

x e E z --* ?(x) e ( - 1/2, 1/2) 

the correlation function 

G~Z)(?) = ~  (4.2) 
~,6', 

where ~,;.w~(A)~ .~ is defined by the same expression (2.9) for ~,;,(0)=-~(A) ~(A)B,~ 
with EA(q) replaced by 

1 
EA(q + ?) = ~ x,~A Eq(x) + ?(X)] V,(x, y)Eq(y) + ?(y)]  

=EA(?I+EA(q)+ ~ q(x) VH(x,y)y(y) (4.3) 
x ,  y ~  A 
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We first notice the "easy" bound 

G~)(~)/> e-~(~) (4.4) 

This follows as in ref. 17 from (4.3), from ,~ (q )=2( -q )  and Jensen's 
inequality. 

Let us restrict our attention to the case when 7(x) describes two 
external charges +y  at Xo and - y  at Yo: 

f +]~, X=X 0 
?(x)= -% x = y o  

O, otherwise 

with 1 ~< Ix 0 -  Yo[ < LN. In this case (4.4) implies, for any fl, 

(4.5) 

1 In G~A)(7 ) ~2 
/3 In dL(xo, Yo) ~< ~ (4.6) 

We shall now prove the opposite bound: 

2 

_ 1  lnG~A)(y) >>.~+O{[lndL(xo, Yo) ] i} (4.7) 
fi In dL(xo, Yo) 

which holds if either /3 >/3 c and )~ ~ ~,o (small activity) or /3 >/~c with no 
restrictions in 2 ~ ~-. 

From (4.6), (4.7), and (2.5) we can conclude that 

1 In G~A)(y) 7 2 
lim -- = - -  (4.8) 

Ix0-y01- ~ fl In dc(Xo, Yo) 2re 

i.e., the asymptotic behavior of the electrostatic potential between two 
external (noninteger) charges is not affected by the presence of the gas. 

To prove (4.8), we perform renormalization group transformations 
both in the numerator and denominator of (4.2). In the numerator the two 
charges -+7 are initially in different blocks and after a number no = 
logL dL(xo, Yo) of iterations they are brought to the same block. Before this 
happens, i.e., n ~< no, we must discuss transformations of the type 

2(")t,,~= 1 - ~ L  (t~/4~)(q+")2(2('-l),--., 2 ("-1) 2(,"-1))(q) (4.9) 
, ~1 N(n) * 

(o) = 2. The choice 0 corresponds to with q = 0 ,  +y,  2(o")-2 ("), and 2, _ q =  
those blocks without external charges; i /=  -+7 corresponds to those blocks 
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with charge -+7. When N(~')= [2 ( ' -  ~) , . . -  �9 X (" 1),/~(n -1)](0), N~,)=_ N(,) 
(independent of ~/!). 

For  n = no the two charges get into the same block, canceling each 
other. Further renormalization group transformation, involving this block, 
i.e., n 7> n o + 1, is described by 

X~,,)(q) = ~_~ L-(#/4n)q2(~t(.- 1) , . . .  , / ] . (n--  1) , X(yn -- 1))(q) 

with 

(4.1o) 

X(,0+l)_ m+~ (2<"~ 2(~ ~ N<n0 + 1 ~ , . - - ,  �9 2("T) (4.11) 

The main result of this section, inequality (4.7), is a consequence of the 
following lemmas. 

k e m m a  4.1. Let 2 ~ o  ~ satisfy the assumption of Theorem 3.1 for 
fl >/?c or Theorem 3.3 for fl > tic- Then, for n ~< no, 

I12(~")I12 ~< CI [~o#(r/)]" (4.12) 

where C1 is a n-independent constant. 

Proof. For simplicity we consider L2=  2 only. By the Hausdorff-  
Young inequality 

ll,~")tl2 ~< II~0~(. + ~)(,l ("-1) �9 ~ " -  1))112 

~< II~o~(.+ r/)ll~ II,~ ("-I)  * 2~n-1)112 

~o#(r/) 112 ("- 1)H1112~"- 1)112 (4.13) 

Now 112 (n- 1)111 ~< 1 + 6" -  1 from Theorem 3.1 or Theorem 3.3 and so 

i/2~,)ll=~<q~0/)( 1 +6~ 1)[i)~,-1)lr2 (4.14) 

where 0 < 6 < 1 as given in Theorem 3.1 or Theorem 3.3. 
Iterating this hound, we get 

[I,~g")ll 2 ~< c ,  [q~#(,)]" 

I . e m m a  4.2. Let 2 c o  ~ satisfy the assumptions of Theorem 3.1 for 
>/~c or Theorem 3.3 for fl > fl~. Then for n > no 

IX~")(o){ ~< Cz {X~"~ u(o){ (4.15) 

where C~ is an n-independent constant. 
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Since 

Now 

ProoL We start from 

n - - 1  

I~,~")(o)1 ~ Ii~ '~~ 1)(o)1 "4- 
j=n0+l 

I ~  j+  1/(0) - A,~J)(O)I (4.16) 

1 
,~J+ ' t ( 0 ) -  N(j+ 11 (~(J) * i~J))(O) 

ii~J+ 1)(o)-  i~J)(O)l ~< i I-()t(Jt-,to) * L~)](o)I 

= I(z (it �9 i~J))(o)l ~<a j lli~'ql ~ (4.t7) 

II~J~ll oo ~ 112 (j *) * i~ j 1111 oo 

[I,~ {j I)111 IIi~J-1~11oo ~< (1 +aJ- ' )II i~J-1~11~ 
(n0) C3 IIi~ "~ 1)11~ ~ C3 112 ~~ * , t_,  II 

~<C3 11'~t112 II'~n~ 112 = C3 II't~"~ = C3 I~"~ (4.18) 

by the Hausdorf-Young inequality and Theorem 3.1 or Theorem 3.3. 
From (4.16)-(4.18) 

( Ii~"~(0)1 ~< 1 + C 3 E aj  1i~ n0+1)(0)1 
j=n0+ 1 

~< C2 I~,~ "~ 1t(0)1 (4.19) 

We are now in a position to state and prove the main result of this 
section. 

T h e o r e m  4.3. Let 2 satisfy the assumptions of Theorem 3.1 
for fl>~c or Theorem 3.3 for fl>fi~. Then, there exists a constant C 
independent of N such that 

G~Aut(y) < C[ds Yo)] (~/2")72 (4.20) 

ProoL We first notice that 

G~Au)(7 ) = i~N)(0) (4.21) 

From Lemmas 4.2 and 4.1 

IG~Ax)(V)I ~ C2 Ii~n~ 1~(0)1 

C1C2[q0B(7)] 2"~ QED (4.22) 
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5. B I F U R C A T I O N  A N D  W E A K  S C R E E N I N G  

At/3 = tic a simple eigenvalue o91(/3 ) of l(/3) = dr(O,/3) crosses the unit 
circle and we can then use bifurcation theory to show that a stable line of 
nontrivial fixed points appear for/3 < 87z. Although the potential between 
two external fractional charges remains logarithmically confining, due to 
the hierarchical "disease" mentioned in the introduction, it becomes weaker 
than that for the trivial fixed point. 

Following Crandall, (11) we first introduce ~ =  {y~fr y (1 )=O} and 
define 

F: ~ x ~ x  R+ --,(r 

F ( t , y ,  f l ) = ~ ( 1 / t ) E r ( t ( e l + y ) , / 3 ) - - t ( e z + y ) ] ,  t # O  (5.1) 
~ [dr(O,/3)-'n ](e, + y), t=O 

Notice that F is continuous in t ~ J~. 
We now show that the hypothesis of the implicit function theorem are 

satisfied, so that the equation 

F(t,  y,/3) = 0 (5.2) 

defines for t in a neighborhood I of 0, continuous function g , e ~  and 
rite ~+ ,  with go=0 ,  /~0=flc satisfying F(t,  gt ,  fit) =0 ,  t e l .  Therefore Zt= 
t(el  + gt)  is a nontrivial fixed point at temperature /~,. Since /~t < tic, for 
t ~ 0 we have a supercritical bifurcation and this will imply stability. These 
statements are made precise in the following result. 

Theorem 5.1. Consider the function F given by (5.1); there exists 
then a neighborhood V c  fr ~ + of (0, tic), an open interval I =  ( - a ,  a) c ~, 
and continuous functions 

with 

fi: { I ~ +  { I ~ a ~  
t ~ fl, ' g: t ~ g, 

(a) fl0=/3c, g 0 = 0  
(b) F(t,  t(el + gt), fl,) = O, Vt ~ I 

Moreover, every solution X r  of r (x , /3 )=0  with (Z,/3)e V is of the type 
( t ( e ~ + g , ) , l ~ t )  for some t e l  For It[ sufficiently small the solution Z,= 
t(el  + gt)  is asymptotically stable. 

Proof .  As discussed in ref. 11, it is sufficient to check the assumptions 
of the implicit function theorem. 

(a) dr(x,  fl) and (Odr/Ofl)(Z , fi) are both continuous in ~ x ~ +. 
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(b) The kernel of dr(0, f lc ) -~  =m(0, tic), {xef f :  dr(O, flc)x=x}, has 
dimension 1 and the codimension of the range of m(0, tic) is one. 

(c) [f---~dr(O, flc)]e~=~el + y (5.3) 

with e r 0 and y e f~. 

Part (a) follows from an explicit computation for dr(x, fl). Part (b) 
follows from (3.19) and (3.20). Also, dr(O, fl) ea=L2-B/4~el and part (c) 
follows. 

In order to investigate the stability of fixed points Zt, t e / ,  we consider 
the expansion of/~, and g, around t = 0 for L 2 = 2: 

1 t2 + O(/4)1 fi~= flc [1-  ~-~ 
l 

2 4 (5.4) 
e2 t2 + O(t4 ) gt 1 --2 -3 

The above expansion corresponds to the usual e expansion for )~4 
theory in dimension d =  4 -  e. Therefore some 0 < b < a 

/~, < tic for I t l < b  (5.5) 

This means that we have a supercritical bifurcation. From the analysis 
in ref. 11 (Theorem 3, pp. 30, 31) we can conclude that the line X, of fixed 
points is stable for Itl <b.  QED 

Next we analyze the screening properties of the line of fixed points Z, 
for ltl sufficiently small. 

Similarly to what was done in Section 4, for n ~<n o we are led to 
consider the transformation 

m~,,(2, * - . .*  2, * 2~n, - 1)) 

2~'~) = ~ 7 "  7 . . ,  2 ; .  2 , ) -~  (5.6) 

where -,t,r)(~ _= 2, and 2, = 2o + ;~ = 2o + t(e~ + gt). As before, m z is the multi- 
plication operator by the function f ,  and 

qb.,(q) = L-(fi'/4rc)(q+y)2 (5.7) 

g, and/~, are given by Theorem 5.1. 
The map 2[" r) ~ z,,~'("+ ~) defines a linear operator Mr, y:/1(~) "+/1(~): 

2--* 2' = Mr.y2 (5.8) 
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Up to order t 2 (and for L 2=2) the matrix elements of M,,~ are 
given by 

Mt,~(q,q ')- l+t2+o(ta)  ~q,q,+-~(6q, q,+~+(~q,q, 1)t-t-O(t 3) (5.9) 

and its eigenvalues #i(t, 7), ieT/, and eigenvectors fi(t,  ~), i e Z ,  can be 
computed explicitly [the numbering fi(t ,  7) is chosen so that f~.(O, 7)(q) = 
6q, i=: fi(q)-]: 

#i(t, ]~)= qgt,~,(i) {1-4- [~ (r l + Ci, i-1)-- l ] t2} + O(t4) 
(5.1o) 1 

fi(t, ]~)= f i+ t---~- (Ci, i+ifi+ 1 + C i i - l f i_ , ) t+  O(t 3) 

where 

co.=- c~(t, y) = g~ 
g~ - q~,,7(J) 

Therefore the eigenvalue with largest absolute value is 

#o(t,~,)=~p~,~(O){l+[~(Co,~+Co,_~)-l]t2}-qg,,~(O)(1+K,t 2) (5.11) 

where K> >~ 0, Ko = 0, so that/~o(t, 0) = 1. 
The {f/(t, ?), i e Z }  form a basis in ll(Z) and writing 2, =Zi~if~(t, 7), 

we obtain 

2~")-  ~ c~eE#i(t, ~:)3" f,.(t, y) (5.12) t, 7 - -  

For n/> no + 1 we are led to consider the map 

~i,+, 1)_- m,,.0(2 t * - - .  �9 2, �9 ,~["~)) 

(L , - . - ,  ; ,  �9 L ) ( o )  

... 2r ) ~ (5.13) m~o o(2, * , ~(no) , ~'(n0 + 1) = t, "vt,+ 7 t ,--y: 

"'"~ (L , . . . ,  ;~, �9 L)(o) 

Therefore the leading contribution to G~AN)(y) is given by [#o(t, ~:)]2,o, 
i .e .~ 

lnd/~(Xo, Yo) \ 2~ ln2  / ( l+~30N) 

where ]CAN] ~ ~" < 1, VnO,  N~ and 7, which establishes our result. 

(5.14) 
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With little extra effort one could establish along the same lines of Sec- 
tion 4 weak screening not just for the fixed point, but also for 2 sufficiently 
close to 2t. 
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